
First integrals and Yoshida analysis of Nahm's equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L569

(http://iopscience.iop.org/0305-4470/19/10/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L569-L573. Printed in Great Britain 

LETTER TO THE EDITOR 

First integrals and Yoshida analysis of Nahm’s equations 

J A LOUW?, F Schwarz-f and W H Steeb-t 
t Department of Physics, Rand Afrikaans University, P 0 Box 524, Johannesburg, Republic 
of South Africa 

GMD, Institut F1, Postfach 1240, 5205 St Augustin, West Germany 

Received 4 April 1986 

Abstract. First integrals of Nahm’s equations for monopole solutions in Yang-Mills 
theories are explicitly given for various special cases. Taking into account the scale 
invariance, all Kowalewski exponents are determined. Both the polynomial first integrals 
and the Kowalewski exponents are obtained with the help of a REDUCE program package. 
This leads to a completely consistent picture in the sense of the analysis recently proposed 
by Yoshida. 

Nahm’s equations arise in the construction of monopole solutions in Yang-Mills 
theories (Nahm 1982, Hitchin 1983, Donaldson 1984, Corrigan and Goddard 1984). 
Let T,, i = 1,2,3,  be n x n matrices of a complex-valued function of the variable 1. 

Then Nahm’s equations are 

They represent an autonomous system of 3n2 ordinary differential equations with 
quadratic non-linearity on the right-hand side. All indices range over 1, 2, 3, Eijk is 
the totally antisymmetric tensor with = 1 and the Einstein summation convention 
is used throughout, except where stated otherwise. Equation (1) is scale invariant 
under the similarity transformations T =  a-lt, = Another remarkable 
property of equation (1) is the existence of a Lax representation (Rouhani 1984, Ward 
1985). 

For any system of autonomous equations it is important to know whether there 
exist first integrals and, if so, to determine them explicitly. There are two different 
methods of tackling this problem. On the one hand, an ansatz for first integrals within 
a well defined class of functions is made which contains a number of free parameters. 
If it is possible to adjust these parameters such that the total derivative with respect 
to time vanishes, a first integral has been found. In general, this method suffers from 
the fact that the necessary calculations increase tremendously with the size of the 
problem. For polynomial systems of equations and polynomial first integrals, however, 
there exists a REDUCE program package which does these calculations almost com- 
pletely automatically (Schwarz 1986a). The second approach uses the well known fact 
that there is a close connection between the existence of algebraic first integrals and 
the analytic properties of the solution set. 

For scale invariant systems this relation is much tighter than in general as shown 
recently by Yoshida (1983a, b). His main results may be stated as follows. Let 
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x = ( x l , .  . . , x , )  be n functions? depending on the variable t and let 

xi  = W i ( X I , .  * . , x , )  ( i  = 1, . . . , n) (2) 

be a system of n autonomous differential equations with rational functions mi. Assume 
that this system is scale invariant under the transformations I =  c t - l f ,  Zi = adzxi, i = 
1, .  . . , n. If the constants c = ( c , ,  . . . , c,) are determined from the system of algebraic 
equations 

(3) -d$i = W i (  c1, . . . , c,) ( i ' l , .  . . , n )  
then the eigenvalues of the matrix 

are called Kowalewski exponents. In the literature (compare Steeb et a1 (1985) and 
references therein) they are also called resonances. Yoshida (1983a, b) obtained the 
following relations between the Kowalewski exponents and the possible existence of 
first integrals of a scale invariant system (2). 

(i) If @(x) is a homogeneous first integral of degree M and grad@(x) is not 
identically zero on the solution set of (3), then p = M occurs as a Kowalewski exponent. 
Beyond that the scale parameters di may occur as eigenvalues of the matrix (4). 

(ii) Let @(x) and @'(x) be two independent first integrals of (2) with the same 
degree M. Suppose the two vectors grad@(x) and grad@'(x) are both finite, not 
identically zero and linear independent for x = c, c a solution of equation (3), then 
p = M occurs as a Kowalewski exponent with multiplicity not lower than 2. 

(iii) In order that a given similarity invariant system (2) is algebraically integrable, 
it is necessary that every possible Kowalewski exponent be a rational number. In other 
words, if there exists at least one irrational or imaginary Kowalewski exponent, the 
system (2) is not algebraically integrable. 

These results will be applied now to various special cases of Nahm's equations. 
Let us consider first the case n = 2 of equations (1) so that there are twelve equations 
and unknown functions. Applying the REDUCE package of Schwarz (1986a) the 
following first integrals are identified: 

3 3 

G2 = c Ti21 
j = l  

G ,  = c T?,2 
j = 1  

The system of algebraic equations following from (3) has two independent non-trivial 
solutions. In both cases the Kowalewski determinant factorises completely over the 
integers into 

det(Kij-psij) = ( p + l ) p 3 ( p -  l)3(p-2)5. (8) 
This form of the Kowalewski determinant has been obtained by applying the REDUCE 

package KOWAL (Schwarz 1986b). The threefold zero p = 1 corresponds to the first- 

t The constant n used in this paragraph has no relation whatsoever to the variable n used in connection 
with Nahm's equation above and subsequently. 
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order integrals (5) whereas the fivefold zero p = 2 corresponds to the second-order 
integrals (6) and (7). Thus we have a completely consistent picture obtained by two 
methods. Yoshida’s theorem assures us that there are no polynomial integrals of higher 
order with non-vanishing gradient on the solutions (9) and (10). 

The case n = 2 for the special choice T,(t) = $(t)uj,  j = 1,2,3, where uj are the 
Pauli matrices, has been studied before (Steeb et a1 1983). It is obtained from the 
results described above if =f l ,  T2,21 = -T2,12 = fi and T3.11 = - T3,22 =f3 are 
taken with the remaining entries identically zero. There is no first-order integral in 
this case whereas two independent second-order integrals are obtained, e.g., as GI = 
f:-f: and HI =f:-f:. The Kowalewski exponents are p = -1 and p = 2 (twofold). 
The two first integrals correspond to this latter exponent. 

Next we consider the case where the matrices T, are linear combinations of the 
generators of sl( n). Let Ha,  a = 1, . . . , n - 1 be the generators of the Cartan subalgebra 
of sl( n) and let { E , ,  E L }  be step operators satisfying the relations (Humphreys 1980) 

= 

[Ha, E*pI = *Ka,E*, [ E a ,  E-PI = &pHp (no summation) (9) 

where { K o p }  is the ( n  - 1) x ( n  - 1) Cartan matrix of sl(n). Assume that 

At first let n = 2 .  The Cartan matrix is equal to 2 and the system (13) reduces to the 
pair of equations @=$, q = p q  There is a single first integral of second order 
h(p, q )  = p 2  - q2 with the Kowalewski exponent p = 2. For n = 3 the Cartan matrix is 
given by 

{ K a p ) = (  -1 -’) 2 

with the corresponding equations of motion 

(15) 
2 

P I  = 41 

41 = %(PI - b 2 )  

P z  = 4: 

4 2 =  q Z ( P 2 - t P I ) .  

There are two independent first integrals of homogeneity degree two and three respec- 
tively: 

h , ( P ,  4) = P : + P : - P I P 2 -  4: - 4: 

h2(P, 4) = P b 2  - P l P :  + P I d  -p24:.  

The algebraic system for the c, ( i  = 1,.  . . , 4 )  which follows from equations (15) has 
five solutions. Only for one of them are all ci different from zero, i.e. c1 = c2 = -2 ,  
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c: = c: = 2 .  Let us call this alternative the main branch. With these values for the c, 
the following expression for the Kowalewski determinant is obtained: 

d e t ( K , , - p s , , ) = ( p + 2 ) ( ~ + 1 ) ( ~ - 2 ) ( ~ - 3 ) .  (17) 

The two first integrals given by equation (16) correspond to the Kowalewski exponents 
p = 2 and p = 3 respectively. 

Finally, for n = 4 with the Cartan matrix 
2 -1  

iK&[-' 0 -1 2 -n) (18) 

the equations of motion are 

4 2  = 43( - b Z  + P3) .  
Here the REDUCE package (Schwarz 1986a) finds the following three independent 
first integrals of respective degrees 2, 3 and 4: 

hl(P, 4) = P : + P : + P : + P l P Z  - 4:  - 4:  - 4:  

h,(p, 4) = P:+P:+p: - P I P Z ( ~ P :  - 3PiP2 +2P:) -P2P3(2P:  - 3p2p3 + 2P:) 

h2(P, 4) = PIP2(PI -p2 )  +PZp3( P 2  - P 3 )  - 4:p2 + 4:( PI - P 3 )  + 4:p2 

(20 )  

- 24:( P: - PIP2 + P:) - 2 4 2  P: + P: + P: - PIP2 - P2P3 - P2P3) 

- M P :  - P r P 3 + P : )  +mq:+ 4:)  + s:+ 4;+ 4:. 

The algebraic system for the ci ( i  = 1, .  . . , 6 )  has sixteen solutions now. For the main 
branch the values c, = c3 = - 3 ,  c2 = -4, c: = c i  = 3 and c: = 4 are obtained which lead 
to the Kowalewski determinant (up to a constant factor) 

det(Kij - psij) = ( P  + 3 ) ( p  + 2)(p + 1 ) ( P  - 2)(p - 3)(  P -4). (21) 

The three first integrals given by equation ( 2 0 )  correspond to the Kowalewski exponents 
p = 2, p = 3 and p = 4 respectively. 

In all cases discussed a consistent picture has been obtained by the two methods 
of investigation. Yoshida's theorem assures the possible existence of algebraic first 
integrals. Beyond that it is quite useful because it limits the order of the ansatz for 
an algebraic first integral with a non-vanishing gradient on solutions of equation ( 3 ) .  
By direct search with the REDUCE package we have obtained the additional result that 
there does not exist a polynomial first integral of order up to and including six in 
both cases (16) and (19). 
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